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Abstract--Taylor bubbles rising through liquids in vertical circular tubes and between parallel planes are 
axisymmetric and nearly spherical at the top. In a vertical annulus, however, the bubbles are radially 
asymmetric and never occupy the whole cross-sectional area. Analysis indicates that axisymmetric bubbles 
rise in an annulus at lower rates than those observed experimentally and hence are never observed in 
practice. In contrast, the asymmetric bubbles take an elliptic shape which results in higher rise velocities. 
A theoretical model for the rise velocity of an elliptic bubble has been developed and the comparison with 
experiment is satisfactory. 
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INTRODUCTION 

It has long been known that gas-liquid flowing simultaneously in circular tubes can distribute in 
a variety of geometric patterns which depend on the flow rates, properties, tube diameter and 
inclination as well as flow direction relative to gravity (Dukler & Taitel t986). Similar patterns exist 
when the conduit is an annulus. Experimental data and mechanistic models for predicting the 
conditions at which transitions take place from one flow pattern to another have recently been 
described for concentric and eccentric annuli (Kelessidis & Dukler 1989). 

A flow pattern which exists over a wide range of flow rate space is that of slug flow. In a tube, 
slug flow is characterized by the pseudo periodic occurrence of large, bullet-shaped bubbles which 
have a round nose, a comparatively flat bottom, are positioned axisymmetrically and occupy most 
of the cross-sectional area of the tube. As the bubble rises, liquid flows around the bubble in 
a thin film moving along the wall. These are frequently designated as Taylor bubbles. Such 
Taylor bubbles also exist in a vertical annulus but the appearance is quite different, as shown in 
figure 1. The bubble having a round nose is wrapped around the inner tube occupying only part 
of the annular area. As the bubble rises liquid falls down in the annular space occupied by liquid 
as well as in thin films between the bubble and the tube walls. 

This highly unsteady condition of slug flow can exist in a variety of situations of industrial 
importance where the flow configuration is that of an annulus. As examples, these conditions can 
be expected during drilling and logging operations in oil wells, in double-pipe heat exchangers 
where vaporization is taking place and in certain situations which can occur during emergency 
cooling of nuclear reactors. In order to design such systems or to interpret their performance, it 
is necessary to model slug flows. A central problem in such modeling is the need to predict the 
rise velocity of the Taylor bubbles (Fernandes et al. 1983). This paper is directed towards presenting 
experimental evidence and prediction of this rise velocity. 

B A C K G R O U N D  

Study of the motion of Taylor bubbles through s tagnat  liquid in vertical tubes has generated 
a vast literature, starting with the pioneering contribution of Dumitrescu (1943) who considered 
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the problem as one of potential flow around an axisymmetric cylinder having a rounded nose. 
Other significant contributions since that time using similar potential flow approaches include 
those of Davies & Taylor (1950), Collins (1965), Bendiksen (1985) and Nickens & Yanitell (1987) 
with many others in between. All these showed the existence of multiple solutions. However, by 
assuming the shape of the nose to be approximately spherical, all of these approaches produced 
a result similar to 

V =  Eli 

where the different investigators produced values of K ranging from 0.32 to 0.36, with U being the 
bubble rise velocity, D the tube diameter and g the acceleration of gravity. Recently, Mao & Dukler 
(1990) explored this problem using direct numerical simulation and were able to eliminate the 
ambiguity of the multiple solutions. For a Taylor bubble rising between closely-spaced parallel 
plates it is possible to take advantage of the simpler geometry and generate solutions for potential 
flow around the nose using mapping techniques. This approach was introduced by Birkhoff & 
Carter (1957) and followed by Garabedian (1957), Vanden-Broek (1984) and Couet et al. (1986). 
Again, the existence of multiple solutions to the mathematical problem was evident. All of these 
approaches ignored the viscous effects and these are expected to be especiaUy important in thin 
receding films. Brown (1965) attempted to match the solution from potential flow to that for a 
receding viscous liquid film with only partial success. Of particular relevance to the work presented 
here is the contribution by Grace & Harrison (1967), who studied the effect of the frontal shape 
of the bubble on the rise velocity by considering bubbles enclosing a rod rising in a rectangular 
channel. Numerous experimental investigations in tubes and between parallel plates have also been 
carried out. 

In a flowing liqmd the rise velocity of a Taylor bubble clearly must depend on the velocity of 
the liquid upstream of the bubble as well as the relative motion due to buoyancy. Based on 
experimental data, Nicklin et al. (1962) suggested this relationship for situations where Re > 8000, 
where Re is the Reynolds number of the upstream flowing liquid: 

Ur~ = 1.2UM + 0.35w/~,  [2] 

where UN is the propagation velocity of the Taylor bubble in flowing liquid and UM is 
the cross-sectional average velocity of the upstream liquid. Since the coefficient of UM is 1.2 
for turbulent flow, this suggests that the effective upstream velocity is the centerline velocity 
of the liquid. Bendiksen (1984) carried out experiments to Re = 110,000, which confirmed this 
result of Nicklin et al. Collins et al. (1978) made the theoretical extension of the work of 
Dumitrescu (1943) for stagnant liquids to the case of flowing ones. While the theory suggests a 
somewhat different dependence than does [2], the practical result is about the same for low viscosity 
liquids. 

Theoretical studies of Taylor bubbles rising through annuli are nonexistent, while experi- 
mental results are limited (Griffith 1964; Rader et al. 1975; Sadatomi et al. 1982) and lead 
to conflicting conclusions. Griffith and Sadatomi et al. both suggested using [1] with the 
effective diameter defined arbitrarily in a way that appeared to result in a fit with their data. Racier 
et al. correlated their data by replacing D in [1] with twice the measured radius of curvature of 
the nose. 

EXPERIMENTAL EQUIPMENT 

Measurements of the rise velocity, shape and the radial location of the bubble tip have been 
made in a vertical annulus consisting of an inside tube with o.d. = 0.0508 m and an outside tube 
with i.d. = 0.0762 m. The eccentricity of the annulus was adjustable and in these experiments 
was either 0 or 50%. The column length from the point of the air injection to the top of the 
column was 6.97 m. Details of the experimental equipment are given elsewhere (Kelessidis & Dukler 
1989). Conductance probes were used for the rise velocity measurements. For two probes located 
a distance L apart vertically, the idealized output signal is depicted in figure 2. The times t~, t2 
and t 3 can be measured and the rise velocity of the bubble, U, corrected for bubble expansion, 
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Figure 1. Schematic representation of a Taylor bubble rising 
in an annulus. 
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Figure 2. Conductance probe signal for the measurement of 
the rise velocity of a Taylor bubble. 

is given by 

L 

U = t, [3] 
1+ pgt2-~L ' 

P h  

where P is the static pressure at the position of the first probe and p is the liquid density. The length 
of the Taylor bubble, as detected by the two probes, may then be calculated by 

l = Ut 2 = U(t3 - t)). [4] 

Rise velocity measurements were made with stagnant liquid and flowing liquid using single 
Taylor bubbles as well as for continuously flowing gas and liquid (slug flow). For the first two cases, 
single Taylor bubbles were injected into the column using two solenoid valves operated by a dual 
set point electronic timer. Measurements of the rise velocity of different length Taylor bubbles were 
performed in order to determine the effect of the bubble length on the rise velocity. 

The shape of single Taylor bubbles rising through stagnant and flowing liquid was determined 
using a set of 30 conductance probes placed 12 ° apart around the periphery. A schematic diagram 
of the probes and the electronics used is shown in figure 3. The voltage output gives the percentage 
of the periphery of the annulus occupied by the Taylor bubble. The rise velocity was measured 
simultaneously and the shape of the bubble in the azimuthal direction was obtained as a function 
of the axial distance ,from the bubble tip. 

The radial location of the bubble tip was measured using four conductance probes placed 
across the gap of the concentric annulus (figure 4). The tip of the bubble will be located closest 
to the position of the probe that comes first into contact with the bubble. These resistance 
signals combined the measured rise velocity give a description of the bubble shape in the radial 
direction. 

EXPERIMENTAL RESULTS 

Velocity o f  the Taylor  bubble 

Measured velocities of single Taylor bubbles rising through stagnant liquid in the concentric 
and eccentric annulus (eccentricity 50%) are shown in figure 5. Each data point represents the 
average of measured velocities of at least 24 bubbles. The results indicate a weak dependence of 
the rise velocity on the bubble length for the concentric annulus and a somewhat stronger 
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Figure 3. Schematic diagram of the probes and the circuit used for detection of the Taylor bubble 
shape. 

dependence for the eccentric annulus. Linear regression for the two cases yields the following 
expressions: 

Uc = 0.361 + 0.022l m/s, R~ = 0.946, [5] 

and 

UE = 0.326 + 0.0571 m/s, R~ = 0.987, [6] 

where subscripts C and E represent the concentric and eccentric annulus configurations and R 2 
is the correlation coefficient. Rader et  al. (1975) found no significant effect of the bubble length 
on the rise velocity. It is speculated that slight changes in the bubble shape at the nose as the 
bubble gets longer and occupies more of the cross-sectional area, may be the cause of this effect. 
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Figure 4. Schematic diagram of the probes for the detection of the position of the tip of the Taylor bubble 
in a concentric annulus. 
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Figure 5. Rise velocity of different length Taylor bubbles in 
stagnant liquid in a concentric and an eccentric annulus. 
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in flowing liquid in an annulus. 

The average values of the rise velocities in the concentric and eccentric annulus are 0.370 and 
0.356 m/s, respectively. 

The rise velocity of a Taylor bubble in a circular tube with the same diameter as the diameter 
of the outside tube of the annulus is approx. 0.30 m/s ([1] with K = 0.35). Hence, the rise velocities 
in concentric or eccentric annuli are considerably larger than the corresponding circular tube. 
Although data was taken with only one diameter ratio it is clear that the conclusion of Griffith 
(1964), that only the larger dimension is significant, is incorrect. 

Data on the rise velocity of single Taylor bubbles injected into flowing liquid as well as data 
gathered during slug flow is shown in figure 6, where U is the predicted rise velocity in stagnant 
liquid, according to [5] and [6], and UM is either the mixture velocity for slug flow or the average 
liquid velocity, ~, for single bubbles injected into flowing liquid. The data is reasonably well 
correlated by the equation 

UN -- U = 1.55UM, Re: --- 0.96. [7] 

It should be noted that Re = UMDh/V, where Dh is the hydraulic diameter of the annulus and 
v is the liquid kinematic viscosity, ranged from 1000 to 28,000 and [7] represents the data even at 
low Re, for which the flow is laminar. The coefficient of 1.55 in [7] is higher than the ratio of the 
maximum to the average liquid velocity for single-phase turbulent flow in an annulus. This is similar 
to the result found by Sadatomi et al. (1982). Previous investigators were not able to interpret 
the value of the coefficient for flow in an annulus in a manner similar to that for circular tubes 
(Griffitb 1964; Sadatomi et aL 1982). One can speculate that the liquid velocity immediately ahead 
of the nose of the bubble increases from its maximum single-phase flow value due to the presence 
of the bubble. This velocity was measured in the concentric annulus using a hot film conical 
probe for three liquid flow rates. The results showed an increase in the liquid velocity ahead of 
the bubble tip but no conclusive evidence was found to relate this increase to the observed value 
of the coefficient. 

The shape of the Taylor bubble 

A plan view of the Taylor bubble in a concentric annulus is shown in figure 7. If ~b = 0/re, 
is a monotonically increasing function of the axial distance, x, from the bubble tip. The 

conductance probes described above measure the quantity 1 -  ~b. As a result of the probe 
spacing, ~ could be determined with _+3.3%. The data was reduced by using the quantity S 
(figure 7) given by S = ORb, where Rb is the radial position of the bubble tip. Since the bubble 

IJMF 16t3--B 
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Figure 7. Plan view of a Taylor bubble rising in a concentric Figure 8. Plan view of a Taylor bubble rising in an eccentric 
annulus, annulus. 

thickness is not known, R b cannot be determined precisely. For  a concentric annulus the bubble 
may be assumed radially symmetric so that 

R) + R2 
Rbc = - -  [8] 

2 

where Rt and R 2 a r e  the radii of the inner and outer tube, respectively. The plan view of 
the cross-sectional area of the Taylor bubble in the eccentric annulus is shown in figure 8. In this 
case 

d = do = x / R ~  - e 2 sin 2 0 - R1 + e cos 0 [9] 

and 

do 
Rb~ = R~ + - -  [10] 

2 

Experimental measurements of the bubble shape are shown in figures 9(a-f), where x is the 
vertical distance from the bubble tip. Different symbols indicate the shape of successive individual 
bubbles. Shapes are given here only for the vertical distance of 7 cm over which most of  the change 
in shape was seen to occur. The solid lines in each plot represent an ellipse drawn through this 
same x distance. Attempts to fit a circle to the shape over this 7 cm were not possible, suggesting 
that a Taylor bubble rising in an annulus assumes the shape of  an ellipse. For  the eccentric annulus, 
the bubbles are more pointed at the nose and the major curvature occurs within a shorter distance 
from the bubble tip. 

For  each Taylor bubble, the maximum 4) value, q~, was recorded and the measurements 
were averaged for each condition. The results for the stagnant and the flowing liquid cases are 
shown in figures 10 and 11, respectively. In the concentric annulus the bubble is symmetric in the 
azimuthal direction, hence, ~bt gives approximately the percentage of the area occupied by the 
bubble, neglecting the area occupied by the thin liquid films. This is not true, however, for the 
eccentric annulus, where the fraction of the cross-sectional area occupied by the bubble can be 
shown to be 

I[ ' [x/R~ - e 2 sin 2 co + e cos ¢o] 2 d~o - OzR~ 

~e = "  ,~(R~ - R ~ )  ' [] l ]  

where 0r = q ~ .  The data of figure 10 demonstrate that for stagnant liquid, the area occupied by 
the bubble is independent of the eccentricity and even for very short bubbles, the area occupied 
is over 70%. Even very long bubbles fail to completely enclose the inner tube. Bubbles approx. 
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Figure 11. Average ~b t values for the concentric and the 
eccentric annulus for a flowing liquid. 

4 m long were injected in the column and never enclosed the inner tube. With the flowing liquid, 
the fractional area occupied by the bubble in the eccentric configuration was substantially lower 
than for the concentric annulus. In general, the Taylor bubble appears to occupy less area under 
flow conditions than under stagnant ones. 

Different length Taylor bubbles were injected into stagnant and flowing liquid under the 
conditions of  laminar and turbulent flow (Re ranged from 990 to 3150) and the approximate 
radial location of  the bubble tip in a concentric annulus was determined as discussed above. 
The results show that typically the bubble tip locates near probe 3 and is towards probe 1 
rather than probe 5 (figure 4). The position of  the maximum liquid velocity, Rm, for single-phase 
turbulent flow in an annulus may be determined by the equation proposed by Kays & Leung 
(1963), 

R m -  RI .= (RI'~ 0'343 
a 2 -  am \ a 2 /  ' [12] 

which yields a position very close to that for laminar flow, 

2 2 Rm= -R~-~S R~ . [13] 
~/2 ln(R~) 

For the annulus of  this study, [12] gives R m = 31.3 mm, while [13] gives Rm = 31.5 mm which are 
1.55-1.57 mm away from the location of probe 3 and towards the centerline. Based on the 
experimental data and noting that the bubble tip is the point of maximum liquid velocity, it may 
be concluded that the presence of the bubble causes a shift in the position of  the maximum liquid 
velocity for single-phase flow towards the inner tube, thus creating an even more asymmetric liquid 
velocity profile. It may be argued, therefore, that the nature of the liquid flow changes in the 
presence of  the Taylor bubble and this fact may explain the large value of the coefficient, in [7], 
determined for the rise velocity of the Taylor bubble under flow conditions. 
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RISE VELOCITY OF A TAYLOR BUBBLE IN A CONCENTRIC ANNULUS. 
THEORETICAL CONSIDERATIONS 

Approximate solutions for the rise velocity of the Taylor bubble in a pipe of circular cross section 
have been developed by a number of authors, as discussed above, using methods based on potential 
theory. We approach the problem for the concentric annulus in a similar way. First, two types of 
concentric bubbles are analyzed and it is shown that the theoretically predicted velocities are lower 
than those observed experimentally. The analysis of the asymmetric bubble is then pursued, with 
the predicted rise velocity shown to be higher than that for the axisymmetric one and in general 
accord with measured values. It is suggested that this accounts for the preferred existence of the 
asymmetric bubble. 

A. The axisymmetric bubble 

Assume that the Taylor bubble has the shape shown in figure 12. The coordinate system is 
moving with the bubble so that the bubble is stationary, while far upstream of the bubble tip 
(z ~ - ~ )  there is uniform downward liquid velocity. The flow is assumed inviseid and irrotational. 
The Stokes stream function, ~, satisfies the equation 

d2~ t~2~P 1 d~ 
~z --T + dr --T r tgr =0" [14] 

The boundary conditions satisfied by the stream function are 

= -½U 2 for z ~ ,  [15] 

= -½UR~ at r = R, [16a] 

and 

= -½UR22 at r = R2, [16b] 

since the walls of the annulus are streamlines along which the stream function is constant. In the 
above equations, U is the bubble rise velocity, RI and R2 are the radii of the inside and outside 
tube of the annulus and z and r are the axial and radial coordinates. If ~ = z/R2,  ~l = r/R2 and 
R~ = R~/R2, the solution to [14] subject to boundary conditions [15] and [16] is 

~ ( ~ , ~ / ) = ,  2..2 ~ [ J,(2,) ] 
- I U R 2 r l  +~=~ Aiexp(2~)R2r/ J~(2:/) Yl(2t) Y~(2:/) , [17] 

where A~ are coefficients to be determined, Ji and YI are Bessel functions of the first and second 
kind of order 1, respectively, and 2~ are the eigenvalues, defined as the solution to the equation 

J~ (,~,) J, (,~,R,) 
- - =  C~. [181 

r l  (2 , )  = E1 (~iRi) 

The velocity potential, ~, is given by 

4~ = UR2~ -~=~ Aiexp(2,~) J0(2t~) ¥,(2;) ¥o(2i~) , [191 

where J0 and ¥0 are Bessel functions of zero order. The flow has a uniform velocity for 
~ - - , -  oo(~ = UR2~), while the radial liquid velocity, v, becomes zero at t /=  Rt and t /--1,  as 
required by the statement of the problem. At ~ -- 0, the bubble forms a "rim" of radius ~ -- R~ 
(see figure 12). Following Davies & Taylor (1950), only the first term in the series solution is 
retained, thus giving 

• = UR2~ - A~ exp(2, ~)[J0(2,~) - Cl ¥0(2,~)] [20] 

and 

I~/ I 2~2 = -3 UR2rr + A~ R:l exp(2~ ~)[J~ (2~ ~/) - C~ Y~ (2~ t/)], [21] 
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where 

and 1, is the solution to [22]. The bubble surface is defined as 

y1(5,~)= Y(o,RJ= -@R:R,' 

and, therefore, 

-~UR:r12+A,R,9exp(il,5)[5,(1,?)-C,Y,(I,?)]= -;UR:Rf. 

The axial velocity component, U, is 

u=u- ~exp(MLW,n) - C, W,q)l, 
2 

while the radial velocity component, v is 

0 =,exp(n,5)[JI(~,tl)-C,Y,(~,?)1. 
2 

For q = Ri, [25] and 1221 give ~(0, Ri) = 0, while [24] gives 

P21 

1231 

v41 

[251 

~(0, Ri) = U - !$ [.&,(A, Ri) - C, Y&, Ri)]. WI 
2 

Since there is no liquid flow across the bubble interface, the rim of the bubble is a stagnation region 
and therefore 

44 
~(0, Ri) = 0 a R = 

U 

2 J~(~,Ri) - Cl &(A, 4) ’ 
v71 

The pressure inside the bubble is constant. Bernoulli’s equation between the rim of the bubble and 
any point (n, c) on the bubble surface gives 

where g is the acceleration of gravity. Evaluation of 
yields 

the partial derivatives and substitution 

U J&,rt) - c, Y&?) * 
m= ’ - expt~‘?&(l, Ri) - C, Y&, Ri) 1 

r J,(/i,q)- c, Y,(A,q) -I:* 

+ leXPt”e) &,(A, Ri) - C, Y,Jl, Ri) ’ ‘291 
Equations [22], [23] and [29] provide the general solution for the rise velocity of large gas bubbles 

rising through stagnant liquids in a vertical concentric annulus to the first approximation. The 
problem for the circular tube (Davies 8z Taylor 1950) is a special case and can be derived from 
the above solution by setting R, = 0 (Ri = 0). 

Because the series solution was truncated at the first term, full closure of the problem is not 
possible. There are two equations, [23] and [29], and three unknowns, namely q, { and U. Following 
Davies & Taylor (1950), the pressure condition (expressed by [29]) may be satisfied at one radial 
position n* and hence at one axial position 5 *. The solution procedure was therefore to choose 
a value for q*, determine the value of <* from [23] and calculate the Froude number, Fr, based 
on the diameter of the outside tube, D,, 

I301 

from [29]. 
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Figure 13. Fr vs ~ * for an axisymmetric Taylor bubble rising 
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Davies & Taylor (1950) chose the value of  r/*= 0.5 and derived an Fr (based on the tube 
diameter D) equal to 0.328. If, however, a series of values is assumed, then the results, shown in 
figure 13, indicate that Fr attains a limiting value of Fr = 0.361 as ~/*--*0, in better agreement with 
the value obtained by Dumitrescu (1943) ([1], with K = 0.35). 

The results for an axisymmetric bubble rising in annuli with R2 = 3.81 crn and different Rt (R1 
ranged from 0.02 to 2.54 era), are also present in figure 13. The arrows indicate the minimum value 
of tl* = RI /R2 .  It should be noted that the test section used in the experiments reported above 
corresponds to R1 = 2.54cm and R2 = 3.8 era. The results indicate that as 7" increases, Fr goes 
through a maximum which no longer occurs at the minimum value of ~/*, the case for a circular 
tube. The rise velocity of an axisymmetric bubble in a concentric annulus decreases as the inside 
tube diameter increases and is smaller than the corresponding empty tube case. These results are 
counter to the experimental data presented above as well as data by Griffith (1964), Rader et  al. 
(1975) and Sadatomi et  al. (1982). 

Another possible axisymmetric bubble shape is shown in figure 14. The top of the bubble is 
defined by the coordinates (0, Rm). There are two radial positions, R ,  and RI2 for every axial 
position (z > 0), which define the bubble surface. An analysis similar to the one presented above 
was carried out. The minimum number of terms that can be retained from the series solution 
is two, while the pressure condition is satisfied at one axial and hence two radial positions. 
The final solution, a system of six equations with seven unknowns, with r/m = Rm/R2 chosen as 
the free parameter, is similar to that previously obtained and is not presented here. Solutions 
were found to exist within a narrow range of r/m values. The results for R2 = 3.81 cm and four 
inside tube radii are shown in figure 15. Inspection of figure 15 indicates that this type of 
axisymmetric bubble (figure 14) yields the same trend as the type shown in figure 12, i.e. the bubble 
rise velocity decreases as the diameter of the inside tube increases, in contradiction to the 
experimental data. 

The above analysis is based on the assumptions that the bubble is axisymmetric and that 
the flow around the rim of the bubble is inviscid. Since the assumption of inviscid flow 
leads to acceptable results for flow in circular tubes and between parallel plates, it seems likely 
that the cause for the error in predictions is due to the assumption of symmetry. Experi- 
ments in annuli with inside tube radii varying from 0.16 to 2.32 crn and an outside tube radius 
of 3.81 cm showed that full closure of the bubble to obtain a symmetric shape never occurred. 
If one adopts the argument of Garabedian (1957), that the stable bubble will rise the fastest, 
it may be argued that since a symmetric bubble rises at a smaller velocity than that 
measured experimentally, a symmetric bubble in an annulus is unstable and therefore never 
observed in real systems. In what follows, a model which approximates the true situation will 
be presented. 
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Figure 14. Axisymmetric Taylor bubble rising in a concen- 

tric annulus. Second model. 
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Figure 15. Fr vs ~/m for an axisymmetric Taylor bubble rising 
in a concentric annulus. 

B. The asymmetric bubble 

The experimental results described above indicated that the forward portion of bubbles rising 
in concentric annuli is elliptic, irrespective of  the bubble length. If  the annulus is unbent in the 
direction indicated by the arrows in figure 7 and the resulting bubble is projected on a vertical plane 
passing through the bubble tip, one derives the situation shown in figure 16. The width of  the 
channel, 2h, represents the perimeter of  the annulus based on the radial distance of  the bubble tip 
from the center of  the tube, Rb, 

2h = 27ZRb, [31 ] 

It is assumed that the bubble shape is elliptic and the flow is inviscid. The coordinate system 
is moving upwards with a velocity U, the unknown bubble rise velocity. Following Grace & 
Harrison (1967), the complex potential for flow around an elliptic cylinder is given by 

W = U(a + b)[cosh(~ - ~0)cos ~/+ i sinh(~ - ~0)sin ~/], [32] 

where a and b are the major and the minor axis of  the ellipse and { and r/are the elliptic coordinates 
defined as: 

c 2 = a 2 - b 2, focal distance, [33] 

x '  = a - x = c cosh { cos r/, [34] 

y = c sinh ~ sin r/ [35] 

and 
XZ2 y2 

+ - -  - 1. [36] 
c 2cosh 2~ c 2sinh 2 

For  { = ~0, a constant, the point (x, y) lies on an ellipse whose semiaxes are given by 

a = c cosh G0, [37] 

b = c sinh {0. [38] 

If  z = x '  + iy; ~ = ~ + irh the liquid velocity, q, is given by 

d W  U(a + b) sinh(~ - ~0) [39] 
q = d--7 = ~ sinh 
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Expanding the hyperbolics and equating real and imaginary parts, the vertical and lateral velocity 
components may be shown to be 

U(a + b) sinh(C - C0)sinh ~ + cosh C0 sin2 ~/ 
u = [ 4 0 ]  

c sinh 2 ~ + sin 2 ~/ 

and 

U(a + b)sinh ~o sin r/cos t/ 
= [41] v sinh 2 ¢ + sin 2 t/ 

The bubble tip is defined as x =0 ,  y = 0  or C = Co, r / = 0 ,  so that at the tip u = 0  and v = 0  
and the tip is a stagnation point. The magnitude of  the velocity at the bubble surface, C = Go, is 
given by 

q° ~ = (u 2 + v2)o = U2(a + b) sin 2 r/ 
(a - b) sinh2 G0 + sin 2 r/" [42] 

The pressure inside the bubble is constant and application of  Bernoulli's equation between the 
stagnation point and any point on the bubble surface gives 

~: q0 ~ - 2ga(l - cos r/) = 0. [43] 

Combination of  [42] and [43] yields 

U2 = a - b 2ga 1 - cos r/ 
a +----b -~n~  (sinh2 Co + sin 2 r/). [44] 

Equation [44] is satisfied close to the stagnation point (i.e. ~/~0) and the final result can be shown 
to be 

U =  b x / ~ .  [45] 
a + b  

Equation [45] is similar to the equation derived by Grace & Harrison (1967) and relates the rise 
velocity of  elliptical bubbles rising in isolation to the bubble dimensions. In general, however, the 
bubble dimensions are not known. The following analysis relates the bubble dimensions to the 
channel dimensions so tha t  the rise velocity may then be determined without knowledge of  
the actual bubble dimensions. 

At the plane x = a, the value of t / i s  ~/= n/2 for every y and hence, the lateral velocity component 
v, is zero everywhere, [41]. Noting also that the bubble is symmetric in the y-direction, the vertical 
velocity component, u, is the same for every y and therefore, has the same value as at the bubble 
surface. An alternative way of  arriving at the same result is to note that the liquid flow is between 
two planes of  zero shear stress and hence, there is no velocity variation in the y-direction and 
therefore the vertical liquid velocity is the same as the velocity at the bubble surface. 

Based on the above discussion, the liquid velocity at the plane x = a, Ux, is given by 

Ux = q0 = 2 v / ~  at x = a. [46] 

Dumitrescu (1943) assumed that the radial component of  the liquid velocity far downstream from 
the bubble tip is negligible and, hence, the average liquid velocity is given by [46] for the 
axisymmetric bubble rising in a tube. This assumption is, however, questionable at the point where 
the solution was obtained (Brown 1965). For the model presented here, however, no assumption 
is made and [46] is a result of  the particular flow situation. 

A mass balance between any point far upstream from the bubble and x = a gives 

U h - b  
= h 2 ~ .  [47] 

Inspection of  figures 7 and 16 shows that 

b 0 
. . . .  ~. [48] 
h n 
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Combination [45], [47] and [48] yields 

a 1 
1 [491 

b (1 - ~ ) ~ / ~  

and 

Vrh = 2 x / ~  = + 2 -  02+ -- 1 tk. [50] 

In order for the argument of the square root to be positive, (k must take values within the range 
0.2929 < ~b < 1. Since a and b were assumed to be the major and the minor axis of  the ellipse, 
a/b > 1, hence, the range of  ~b values is 0.6464 < ~b < 1. It can be shown that Frh has a maximum 
at this condition: 

4)m = 0.7278, Fr m = 0.2935, [51] 

where the subscript m denotes the maximum condition. It should be noted that tkm is not the 
maximum value of  th observed along the back of the Taylor bubble. Rather it represents the value 
of 4~ = b/h which exists at the origin of the ellipse for that particular ellipse which results in 
the maximum rise velocity. We accept Garabedian's (1957) speculation that the bubbles 
observed experimentally are those which yield the maximum velocity. Thus, the applicable Fr  is 
Fr~n = 0.2935. 

In order to compute a rise velocity to compare with, experiments are necessary to select h. If 
Lt denotes the radial distance from the inside tube to the location of  the bubble tip, then 

h = ~(R~ + L,). [52] 

The simplest choice, in the absence of data, is 

(R2 - R1 ) 
L t  = - -  [ 5 3 ]  

2 

a bubble whose tip is located halfway between the inside and outside tube walls. For  the 
annulus of this study, [53] yields h = 9.97 cm. In fact, experimental results, presented above, 
suggest that 0.218 ~< L t ~< 0.436 cm, which yields 8.66 ~< h ~< 9.35 cm. For  the experiments described 
above, use of Fr  m = 0.2935 gives a predicted rise velocity of 0.382 ~< U ~< 0.397 m/s compared 
to the experimentally measured average value of  0.37 m/s. Thus, the error ranges from 3.2 to 
7.3% high. 

Equations [51] and [52] were used to predict the rise velocity of Taylor bubbles in annuli studied 
by previous investigators. The comparison is shown in figure 17. In the absence of  other data, h 
was calculated using [53]. The prediction of the theory is considered satisfactory for atl the cases 
which cover a wide range of  annuli tube diameters (R~ ranged from 0.75 to 10.08 cm and R2 ranged 
from 1.50 to 12.17 cm). 

It is now necessary to test the assumption that the forward portion of bubbles rising in concentric 
annuli is part of an ellipse. The ellipse defined by thin = 0.7278 and h = 9.97 cm is given by 

a = 11.60 cm, b = 7.26 cm [54a] 

and 

(a - x )  2 v 2 
a----i--- + ~5 = 1. [54b] 

Equation [54] is shown as the solid line in figures 9(a-f). The plots indicate reasonable agreement 
between the theory and experiments for the concentric annulus and for distances up to ~ 7 cm from 
the bubble tip. The data for the eccentric annulus agrees with [54] over a smaller axial distance 
but the agreement may still be considered satisfactory. The fact that the rise velocity did not change 
appreciably with eccentricity, as the data indicated, may also be deduced from the above figures 
where the same ellipse approximates equally well the nose of the bubble rising in a concentric or 
an eccentric annulus. It should also be noted that if the value of h was chosen as the value indicated 
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by experiment, an even better agreement of the theory with the experimental data would be derived 
both for the concentric and the eccentric annulus. 

Grace & Harrison (1967) observed that small capped bubbles rising between parallel planes take 
up an elliptic shape when they enclosed a rod as they rose, while they were spherical in the absence 
of the rods. Based on measurements of the bubble dimensions, they found good agreement between 
theory and experiment. In general, however, the bubble dimensions are not known. They showed 
that elliptical bubbles rise faster than spherical bubbles. Therefore, elliptical bubbles should be 
observed in practice, if one adopts the argument of Garabedian (1957). This, however, does not 
occur for bubbles rising in circular tubes or between parallel plates because theory shows that 
elongated bodies placed in a moving stream are subject to destabilizing moments (Milne-Thomson 
1968). Hence, bubbles rising in these geometries as well as in isolation, take up the spherical shape. 
Grace & Harrison (1967) speculated that the presence of the rod provides a stabilizing couple and 
therefore the bubbles take up the elliptic shape. 

The theory presented above shows that an elliptic asymmetric bubble rises faster than an 
axisymmetric one in a concentric annulus. Furthermore, no destabilizing moments are likely to exist 
since the bubble occupies more than 70% of the periphery and the center tube seems to stabilize 
the bubble, as in the case studied by Grace & Harrison (1967). Thus, elliptical Taylor bubbles are 
observed rather than spherical. In an extension o f  these ideas the bubble dimensions were related 
to the equipment size and the bubble velocity can then bedetermined from the inside and outside 
tube radii of the concentric annulus. 

CONCLUSION 

Bubbles rising through liquids in vertical annuli are radially asymmetric, rise faster than the 
corresponding circular tube and never occupy the whole cross-sectional area. Experimental data 
indicates that the forward portion of bubbles rising through stagnant liquid takes an approximate 
elliptic shape, in contrast to bubbles rising in other geometries (tube, parallel planes) where the 
forward portion is nearly spherical. 

A theory has been developed which predicts the velocity of an elliptic bubble rising through 
stagnant liquid in a concentric annulus. The predictions agree well with experiment from this study 
as well as results reported by previous investigators. 

The propagation velocity of bubbles rising in flowing liquid or during slug flow is the sum of 
the rise velocity through stagnant liquid and a contribution due to bulk motion of the fluid ahead 
of the bubble tip. The latter is higher than in the circular tube and it is plausible that in the presence 
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of the bubble, the maximum liquid velocity ahead of the bubble tip increases from its single-phase 
flow value. 
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